Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation.

نویسندگان

  • Belinda Mei Tze Ling
  • Narendra Bharathy
  • Teng-Kai Chung
  • Wai Kay Kok
  • SiDe Li
  • Yong Hua Tan
  • Vinay Kumar Rao
  • Suma Gopinadhan
  • Vittorio Sartorelli
  • Martin J Walsh
  • Reshma Taneja
چکیده

Skeletal muscle cells have served as a paradigm for understanding mechanisms leading to cellular differentiation. The proliferation and differentiation of muscle precursor cells require the concerted activity of myogenic regulatory factors including MyoD. In addition, chromatin modifiers mediate dynamic modifications of histone tails that are vital to reprogramming cells toward terminal differentiation. Here, we provide evidence for a unique dimension to epigenetic regulation of skeletal myogenesis. We demonstrate that the lysine methyltransferase G9a is dynamically expressed in myoblasts and impedes differentiation in a methyltransferase activity-dependent manner. In addition to mediating histone H3 lysine-9 di-methylation (H3K9me2) on MyoD target promoters, endogenous G9a interacts with MyoD in precursor cells and directly methylates it at lysine 104 (K104) to constrain its transcriptional activity. Mutation of K104 renders MyoD refractory to inhibition by G9a and enhances its myogenic activity. Interestingly, MyoD methylation is critical for G9a-mediated inhibition of myogenesis. These findings provide evidence of an unanticipated role for methyltransferases in cellular differentiation states by direct posttranslational modification of a transcription factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylation muscles into transcription factor silencing

The transcription factor MyoD is a master regulator of skeletal muscle differentiation. The finding that G9a, an enzyme principally involved in histone H3 lysine 9 di-methylation (H3K9me2), methylates MyoD, identifies previously unappreciated mechanisms by which chromatin modifiers regulate the transcriptional activity of non-histone substrates to control cellular differentiation programs.

متن کامل

G9a mediates Sharp-1–dependent inhibition of skeletal muscle differentiation

Sharp-1, a basic helix-loop-helix transcription factor, is a potent repressor of skeletal muscle differentiation and is dysregulated in muscle pathologies. However, the mechanisms by which it inhibits myogenesis are not fully understood. Here we show that G9a, a lysine methyltransferase, is involved in Sharp-1-mediated inhibition of muscle differentiation. We demonstrate that G9a directly inter...

متن کامل

Modulation of lysine methylation in myocyte enhancer factor 2 during skeletal muscle cell differentiation

Myocyte enhancer factor 2 (MEF2) is a family of transcription factors that regulates many processes, including muscle differentiation. Due to its many target genes, MEF2D requires tight regulation of transcription activity over time and by location. Epigenetic modifiers have been suggested to regulate MEF2-dependent transcription via modifications to histones and MEF2. However, the modulation o...

متن کامل

G9a promotes proliferation and inhibits cell cycle exit during myogenic differentiation

Differentiation of skeletal muscle cells, like most other cell types, requires a permanent exit from the cell cycle. The epigenetic programming underlying these distinct cellular states is not fully understood. In this study, we provide evidence that the lysine methyltransferase G9a functions as a central axis to regulate proliferation and differentiation of skeletal muscle cells. Transcriptome...

متن کامل

Arginine Methylation by PRMT1 Regulates Muscle Stem Cell Fate

Quiescent muscle stem cells (MSCs) become activated in response to skeletal muscle injury to initiate regeneration. Activated MSCs proliferate and differentiate to repair damaged fibers or self-renew to maintain the pool and ensure future regeneration. The balance between self-renewal, proliferation, and differentiation is a tightly regulated process controlled by a genetic cascade involving de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 3  شماره 

صفحات  -

تاریخ انتشار 2012